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Abstract. While real-time face recognition has become increasingly
popular, its use in decentralized systems and on embedded hardware
presents numerous challenges. One challenge is the trade-off between
accuracy and inference-time on constrained hardware resources. While
achieving higher accuracy is desirable, it comes at the cost of longer
inference-time. We first conduct a comparative study on the effect of
using different face recognition distance functions and introduce a novel
inference-time/accuracy plot to facilitate the comparison of different face
recognition models. Every application must strike a balance between
inference-time and accuracy, depending on its focus. To achieve optimal
performance across the spectrum, we propose a combination of multiple
models with distinct characteristics. This allows the system to address
the weaknesses of individual models and to optimize performance based
on the specific needs of the application.
We demonstrate the practicality of our proposed approach by utiliz-
ing two face detection models positioned at either end of the inference-
time/accuracy spectrum to develop a multimodel face recognition pipe-
line. By integrating these models on an embedded device, we are able
to achieve superior overall accuracy, reliability, and speed; improving
the trade-off between inference-time and accuracy by striking an opti-
mal balance between the performance of the two models, with the more
accurate model being utilized when necessary and the faster model be-
ing employed for generating fast proposals. The proposed pipeline can
be used as a guideline for developing real-time face recognition systems
on embedded devices.
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1 Introduction

Biometric authentication in physical environments is becoming more and more
widespread. For the past decade, each Chinese person has been given a score
that changes depending on how the person's decisions are in line with the gov-
ernment [15]. In India, each person is assigned a 12-digit number, which is con-
tinuously supplemented with biometric characteristics and is required for many
parts of life, such as banking, travelling, and even being admitted to schools [20].
In the Russian metro, there is a face recognition payment system [17]. The EU
plans an entry/exit system, where fingerprints and facial images of travelers
from third-countries will be collected [6]. These applications paint a scary pic-
ture for a privacy conscious user; biometrics from millions, in some cases billions,
of users are stored in a single logical location. All requests for information must
go through that point, creating a single point of failure that can be exploited by
attackers or misused by operators:

1. A central place with potentially billions of personal data is an excellent target
for technical, legal, and organizational attacks. Unfortunately, even with the
highest security precautions, data breaches happen again and again, even
(or especially) with the largest providers3.

2. People must trust their providers. Users have to rely on the operator's in-
tegrity to ensure that their biometric data is only used for its intended
purpose, without being shared or exploited for other purposes. Users have
limited control over their data once it is collected.

To mitigate the risks associated with centralized biometric data storage, a decen-
tralized approach is considered the gold standard [16]. By distributing biometric
data across multiple instances, each instance becomes less attractive to potential
attackers. However, decentralization also introduces additional complexity to the
system, as Wolpert's no free lunch theorem suggests [22]: the gain in security
comes at the cost of a more complex system.

One of the complexities associated with decentralized systems is the data
economy perspective, whereby several smaller organizations operate sensors to
reduce the amount of data available to any single entity [19]. As a result, de-
centralized systems aim to support as many sensors as possible by minimizing
hardware requirements.

To address these challenges, this paper proposes an efficient face pipeline
architecture capable of running on embedded systems. We tested its real-world
behavior by mounting three cameras in front of our office doors and running the
proposed pipeline. Furthermore, we evaluated if new systems and biometric ar-
chitectures should provide additional metrics, to be able to make a more informed
decision while deciding between components for face recognition pipelines.
3 A list with recent large-scale data breaches is visualized at https:

//informationisbeautiful.net/visualizations/worlds-biggest-data-
breaches-hacks/

https://informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
https://informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
https://informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
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Overall, this research underscores the importance of prioritizing security in
biometric data management while considering the trade-offs between security
and complexity in designing decentralized systems.

2 Background
Authenticating a person using biometrics requires two main steps: face detection,
followed by face recognition. First, the system must accurately detect and locate
the face within the image or video frame. Once the face is detected, the system
can then extract the relevant facial features necessary for recognition. Recogni-
tion involves comparing these features to a database of known faces to determine
the identity of the individual. Therefore, accurate detection and recognition are
essential for effective and reliable biometric authentication.

The Labeled Faces in the Wild (LFW) dataset [18] is a widely-used bench-
mark dataset in the field of computer vision to assess the performance of recog-
nition models. This dataset has become an important standard in the field and
is commonly used for performance comparisons between different models and
comprises over 13,000 images of faces with variations in pose, lighting, and fa-
cial expressions. As there are multiple images of the same person, the dataset
is suitable for evaluating face recognition models. We utilized the dataset for
evaluating the performance of both face recognition and face detection models.
To evaluate face recognition models, LFW provides a test dataset that contains
3,000 true positive and 3,000 true negative matches.

Specifically, we used a metric in which a predicted bounding box is considered
successful if it has an overlap of more than 50 % with the ground truth bounding
box. This metric was chosen as it is a commonly used standard for evaluating
the performance of face detection models on the LFW dataset, e.g. by Yang et
al. [23]. By employing this metric, we were able to quantitatively measure and
compare the accuracy of different face detection models.

2.1 Face detection
Face detection is a computer vision task that identifies the presence and location
of human faces in digital images and video frames. With the increasing demand
for facial recognition technology, a wide variety of face detection models have
been developed. Each model has certain advantages over their competitors. Some
focus on finding tiny faces [12], occluded faces [11], or using multiple camera
angles [7].

In order to quantify the quality of networks and being able to compare dif-
ferent models, they are evaluated on publicly available datasets. There is a fo-
cus on accuracy: Wider Face [23] shows precision-recall curve, LFW [18] shows
the ROC-curve and the corresponding area under curve, VGGFace2 [2] shows
false(-positive)-acceptance-rates and rank-accuracies, UMD Faces [1] shows the
normalized mean error.

In this section, we will provide a brief overview of four popular choices of
face detection networks.
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Retinaface is based on a single-shot detector framework and uses a fully con-
volutional neural network (FCN) to detect faces in images. The architecture of
Retinaface consists of three main components: a backbone network, a multiscale
feature pyramid network, and three task-specific heads.

The backbone network is responsible for feature extraction and is typically a
pre-trained ResNet or MobileNet. The feature pyramid network then takes the
feature maps generated by the backbone network and produces a set of multiscale
feature maps. Finally, the task-specific heads, which consist of a classification
head, a regression head, and a landmark head, are applied to each of the feature
maps to predict the presence of a face, its bounding box, and its facial landmarks.

ULFGFD is specifically designed to be lightweight and suitable for deployment
on edge computing devices. The small size, just over 1 MB, stands out in par-
ticular. The network is based on a single-shot detector (SSD) architecture and
consists of a backbone network and a prediction network. The backbone network
is a lightweight MobileNetV2 architecture that is used to extract features from
input images. The prediction network consists of a set of convolutional layers
that are used to predict the bounding boxes and confidence scores of faces in the
input images.

ULFGFD also uses a feature pyramid network (FPN) to detect faces at dif-
ferent scales. The FPN consists of a set of convolutional layers that are used to
generate feature maps at different resolutions. These feature maps are then used
to predict the bounding boxes and confidence scores of faces at different scales.

YuNet is a deep neural network architecture designed for efficient face detection
and recognition in real-world scenarios [8].

YuNet is composed of three main components: a lightweight backbone net-
work, a feature pyramid network (FPN), and a detection head. The backbone
network is based on MobileNetV2, a popular architecture known for its efficiency
and low computational cost.

The detection head of YuNet is responsible for predicting the locations of
faces in the input image. It consists of a set of convolutional layers followed by
two parallel branches. One branch performs classification to determine whether a
given region of the image contains a face or not, while the other branch performs
regression to predict the bounding box coordinates of the face.

Haarcascade is a widely used computer vision algorithm for face detection,
having been introduced by Viola and Jones as early as 2001 [21]. Despite being
around for over two decades, Haarcascade remains a popular choice for face
detection in various applications due to its simplicity, efficiency, and effectiveness.

The Haarcascade algorithm works by using a series of classifiers to detect
faces within an image. Each classifier is composed of a set of weak learners,
which are typically decision trees that evaluate simple features such as edges and
corners. These features are calculated on a sliding window that moves across the
image, with the goal of detecting faces at different scales and orientations.
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One limitation of Haarcascade is that it can be sensitive to changes in lighting
conditions and occlusion, which can result in false positives or missed detections.

2.2 Face recognition

Face recognition is the process of identifying an individual based on their dis-
tinctive facial features. In recent years, the accuracy, reliability, and efficiency
of this process have increased significantly due to advancements in deep learning
algorithms and the availability of large datasets.

The majority of state-of-the-art (SOTA) algorithms requires a pre-processed
RGB image as input, which is then used to create a high-dimensional vector
that represents the individual's facial features. To ensure that the images are
properly pre-processed, it is necessary to use landmarks from the individual's
face. Typically, these landmarks consist of the eye, nose, and mouth points,
which are used to ensure that the image is properly aligned and scaled.

For our pipeline, we tested a single instance of a state-of-the-art face recog-
nition model. This decision was based on two factors: the model's negligible
inference-time compared to face detection and its near-perfect accuracy. There-
fore, our primary focus was not on selecting the best-performing face recognition
model, but on optimizing the pipeline's overall efficiency.

Arcface Arcface [4] is a SOTA face recognition method that uses a neural
network-based approach to extract discriminative features from faces. The tech-
nical details of Arcface include a modified ResNet architecture with a large
embedding size, a novel angular softmax loss function, and specific optimiza-
tion techniques. The ResNet architecture consists of several convolutional layers,
which extract features from the input face image. The embedding size of Arcface
is a 512 dimensional floating point array.

Arcface is trained using a custom loss function (Arcface loss), based on co-
sine similarity between features because it enforces more inter-class discrepancy.
Different distance functions are used for comparing two embeddings in practice.
Typically, the L2 loss function is used as distance measurement. However, in cer-
tain applications different distance functions are preferable. For example, a zero
knowledge proof might need an inner product for efficient calculation, therefore
cosine distance might be the preferred function.

3 State-of-the-art face recognition pipeline

The typical SOTA setup for image-based face recognition consists of the following
components:

Camera → Detection → Recognition → Comparison

The inference time is heavily influenced by the size of the retrieved camera image.
For this paper, we assume that the camera produces 4K images. For the default
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pipeline, we use Retinaface [3] as face detection model because it has SOTA
accuracy on many datasets and returns face landmarks which are needed for
face recognition. Similarly, Arcface [4] is used because it gives SOTA accuracy.

Two embeddings are compared using a distance function. There has been
no study on the impact of using different distance functions during inference.
Therefore, we evaluated the impact of three popular distance metrics used with
Arcface, namely absolute, L2, and cosine distance. We calculated the embeddings
of the 6,000 test image-pairs from the LFW dataset and followed their protocol
to verify the accuracy of Arcface using different distance metrics. Our findings
reveal that the choice of distance metric does not have a significant effect on
the analysis outcome. The precision-recall plot presented in Fig. 1 indicates only
minor differences, which are only visible if we zoom in on the plot. The infer-
ence time is not affected significantly as well, our benchmark indicates roughly
1 µs computation time for all three variants (L2: 1.0939µs ± 3.9ns, Cos-Dist:
1.1549µs± 20.9ns, absolute: 1.0956µs± 8.6ns).
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Fig. 1: Different distance functions for Arcface. Notice the magnified scale; plot-
ting the whole spectrum (0-1) would yield no discernible distinction. The green
line is not visible, as using L2 and COS distance functions yields an identical
precision-recall curve. The Area Under Curve (AUC) is not significantly different
either: AUCL2 = 0.99884653, AUCABS = 0.9988512, AUCCOS = 0.99884653.

Due to popular use, the L2 norm is used for the rest of this paper. This gives
us the following architecture for our default pipeline:

Camera︸ ︷︷ ︸
4k images

→ Detection︸ ︷︷ ︸
Retinaface

→ Recognition︸ ︷︷ ︸
Arcface

→ Comparison︸ ︷︷ ︸
L2 Norm
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3.1 Performance

In order to establish a baseline for the performance, we implemented the pipeline
in Rust using Tensorflow Lite (Retinaface and ULFGFD) and OpenCV (YuNet
and Haarcascade). Due to popularity, all benchmarks are executed on a Jet-
son Nano4, with an NVIDIA Maxwell GPU and a Quad-core ARM Cortex-A57
MPCore CPU.

There are two distinct performance metrics:

1. With respect to time: We established benchmarks using Criterion [10]. To
ensure statistical significance and reliability, each component underwent 100
iterations, and the reported time is based on the median of these runs. The
variance is less than 4.8% of the value for all components. It is noteworthy
that the times reported are calculated per image, with Retinaface requiring
a total of 91 seconds for inference.

Camera (4k)︸ ︷︷ ︸
0.02s

→ Retinaface︸ ︷︷ ︸
91s

→ Arcface︸ ︷︷ ︸
0.071s

→ Comparison︸ ︷︷ ︸
0.000028s

Retrieving the 4k image from the camera is possible at that frequency, be-
cause hardware acceleration and MJPG compression are used.

2. With respect to accuracy: We use the 6,000 face comparisons proposed
by LFW [18] and run the face recognition pipeline on it. If multiple faces
are found, the one closest to the center is used, as the LFW images are
pre-processed in that way. Retinaface manages to find all faces. As LFW
primarily features single-person portraits, this accuracy was expected. Arc-
face uses the best threshold on that dataset to decide if the two faces are
from the same person.

Camera (4k) → Retinaface︸ ︷︷ ︸
100%

→ Arcface︸ ︷︷ ︸
99.3%

→ Comparison

3.2 Improvements

Time-performance (1.5 minutes per 4K image) is arguably too slow for real-time
performance. Most time (99.9%) is spent on Retinaface. There are two options
to reduce the inference time:

1. Reduce the input dimension, which yields the following time-performance:
-- 4k (3840x2160px): 91.24 s
-- Full HD (1920x1080px): 11.52 s
-- HD (1280x720px): 5.13 s
-- SD (640x480px): 1.72 s

4 https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
jetson-nano/

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/
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How is accuracy-performance affected if input dimension is reduced? The
theoretical lower-limit is detecting people of size 16 px x 16 px, as this is
the smallest anchor used by Retinaface. We tested if such small faces are
detected in practice. Starting with LFW's image size of 250 px x 250 px,
we run our face recognition pipeline over all (test) images to determine the
detected face size. Subsequently, the images were scaled down by 50 pixels,
and the experiment was repeated until the image size was 50 x 50 px. The
resulting face sizes were recorded. Fig. 2 illustrates the widths and heights
in pixels for detected faces. It is apparent that the smallest anchors are not
only used for sub-features (for use in higher levels of the FPN [13]), but
also to directly detect faces. Interestingly, the smallest detected face has a
dimension of 10 px x 14 px. This is smaller than the smallest anchor (16 px x
16 px) and possible because the network refines its predicted bounding box
in later stages.
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Fig. 2: The sizes of detected faces using Retinaface. Sizes larger than 99 pixels
are not displayed as our focus was on identifying the smallest detectable faces.

Despite the successful detection of faces, there is no guarantee that the image
has enough information for face recognition to recognize a person. Therefore,
we created another experiment by performing the same shrinking of the
images as before. An embedding of the scaled down version of the image is
(L2) compared to the embedding of the full image. The results are plotted
in Fig. 3.
As anticipated, our analysis reveals a distinct threshold at approximately
40 x 30 pixels, beyond which facial recognition accuracy is substantially
diminished.
Even though an image of SD quality still has an inference time of 1.7 seconds,
it skips 99.69% of potential input data (25,600 vs 8,294,400 pixel).
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Fig. 3: L2 distance to reference embedding (full size face) using different face
sizes (smaller is better).

We can calculate the real-world impact of this dimension reduction. For this
calculation, we need a few hardware assumptions.
-- Face dimensions Being able to detect an object depends on its size.

Since we want to detect a face, we have to assume the dimensions. The
US Department of Defense measured the width (bitragion breadth) and
height (menton-crinion length) of the face to be between 12--15 cm and
15--21 cm, respectively [5]. We want to find the lower limit of face recog-
nition pipelines possibilities. Therefore, we use the upper end of the face
dimension scale:

facewidth = 0.15 m, faceheight = 0.21 m
-- Camera For the camera, we assume typical 70 mm focal length with a

full frame 35 mm sensor:
camerafocallength = 0.07 m

cameraimagewidth = 35 mm, cameraimageheight = 24 mm
Figure 3 demonstrates that facial recognition can reliably commence at sizes
as small as 40 x 30 pixels.

objectwidth = 30 px, objectheight = 40 px
We can now calculate the maximum distance in millimeters of a person with
respect to the camera, such that the face is still recognizable:

distance =
camerafocallength × pixelwidth/height × facewidth/height

objectwidth/height × cameraimagewidth/height
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If we use pixelwidth/height of 640 and 480 respectively, we can detect faces
up to 6.4m. With a pixelwidth/height of 3840 and 2880 this distance increases
to 38.4m.

2. Use a different, more lightweight model. Due to the use of a large backbone
network (ResNet [9]) and its computationally heavy use of feature pyramid
networks [13], the inference time of Retinaface is slow. There are lighter
networks with fewer parameters, such as ULFGFD. One major deficiency of
fast face detection algorithms is their tendency to produce false positives.
Retinaface, on the other hand, has been shown to have a very low false
positive rate, making it a more reliable option for these types of applications.
As face recognition expects a pre-processed image and this pre-processing
depends on the location of landmarks, it is not possible to calculate face
recognition accuracy with ULFGFD.

4 Inference-time/accuracy tradeoff

The accuracy of face detection models has been extensively studied and re-
ported in modern research (as demonstrated by the reported metrics described
in Section 2.1). However, an often overlooked aspect in the evaluation of these
models is their inference time. This information is important, as a slow infer-
ence time can lead to delays and long queues, compromising the effectiveness
of the system (cf. Section 3.1). Inference time can also impact the scalability
and cost-effectiveness of a face detection system, as a slow model may require
more powerful hardware or computing resources to achieve the desired perfor-
mance. Furthermore, inference time is especially important when considering
the deployment of face detection models on embedded hardware. These devices
often have limited computing resources and require models that can perform in
real-time. Therefore, evaluating face detection models based on their inference
time is essential for ensuring that they can be deployed effectively on embed-
ded hardware and meet the performance requirements of real-world applications.
Despite its critical importance in real-world deployment scenarios, none of the
existing datasets currently available comprehensively address this aspect of per-
formance evaluation. As a result, there is a significant gap in our understanding
of the practical implications of face detection model performance in real-world
settings.

This paper evaluates SOTA face detection models with respect to these met-
rics. We assessed the performance and accuracy of four face detection mod-
els, Retinaface [3], ULFGFD [14], YuNet [8], and Haarcascade [21]. In this pa-
per, Figure 4 illustrates the space of performance-accuracy for current models.
It is important to note that only the networks situated at the border of the
performance-accuracy spectrum are relevant, and their selection depends on the
specific application requirements. Different applications may require different
points on the performance-accuracy spectrum, and our study provides insights
into the trade-offs involved in selecting an appropriate face detection model for a
given application. Our results, depicted in Fig. 4, clearly show that Haarcascade
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has a detection failure rate of over 50%, even for the relatively simple portrait-
like datasets such as the LFW dataset. Retinaface achieves high accuracy but
requires high inference time, while ULFGFD has lower accuracy but a faster
inference time.
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Fig. 4: The figure illustrates the trade-off between inference-time and accuracy for
various face detection networks. The x-axis represents the inference time, while
the y-axis represents the accuracy of the networks. The solid line in the figure
represents the Pareto frontier, which is the optimal trade-off between accuracy
and inference time.

5 Fast and accurate face recognition pipeline

In order to optimize face detection for both speed and accuracy, we propose
an approach that combines two algorithms with distinct characteristics in the
inference/time spectrum to harvest the strengths of each. A fast algorithm is used
as a proposal generator to quickly create possible face detections. We prioritize
minimizing false negatives in the proposal generator, as false positives can be
verified by the subsequent algorithm. While our analysis shows Haarcascade to
be the fastest method, it misses more than half of the faces even in the easy LFW
dataset. Therefore, we use ULFGFD as our algorithm for generating proposals.
These proposals are then confirmed and augmented with face landmarks by a
more accurate algorithm, Retinaface. This yields the following pipeline:

Camera (4k) → ULFGFD → Retinaface → Arcface → Comparison

As discussed in Section 3, face recognition requires face dimensions of at least 30
px x 40 px. To achieve higher accuracy, we recommend using face images with
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dimensions of 50 px x 65 px or larger. Our experimental results indicate that
performance degrades when face images are smaller than this threshold.

As the pipeline should take bounding box errors of ULFGFD into account,
we performed a systematic search on a grid of possible dimensions and performed
additional benchmarks on Retinaface with respect to inference time:

-- 150 px x 150 px: 0.169 s
-- 125 px x 125 px: 0.093 s
-- 100 px x 100 px: 0.052 s
-- 75 px x 75 px: 0.038 s
-- 50 px x 50 px: 0.018 s

Subsequently, we constructed the complete pipeline and evaluated the accuracy
of each individual component as follows:

Camera (4k) → ULFGFDth=0.05︸ ︷︷ ︸
96.45%

→

Retinaface50x50︸ ︷︷ ︸
73.2%

Retinaface75x75︸ ︷︷ ︸
86.1%

Retinaface100x100︸ ︷︷ ︸
98.3%

Retinaface125x125︸ ︷︷ ︸
98.9%

Retinaface150x150︸ ︷︷ ︸
99.7%

→

Arcface︸ ︷︷ ︸
92.3%

Arcface︸ ︷︷ ︸
95.3%

Arcface︸ ︷︷ ︸
97.3%

Arcface︸ ︷︷ ︸
97.7%

Arcface︸ ︷︷ ︸
98.3%

→ Comparison

A size of 100 px x 100 px for the Retinaface input seems to be a good tradeoff
between time and accuracy performance. With this, the full pipeline runs on
∼ 4.7 FPS on a Jetson Nano and achieves an overall accuracy of 92.3% (0.9645∗
0.983 ∗ 0.973) on the LFW dataset.

Next, we can calculate both the inference time and accuracy of the full
pipeline with these three combinations of networks and compare it to existing
algorithms. Fig. 5 clearly demonstrates that by integrating multiple different net-
works, the trade-off border in the inference-time/accuracy spectrum is increased
and a better balance between these two metrics is achieved. This indicates the
effectiveness of our approach in improving face detection performance.

Notably, the selection of suboptimal parameters, as observed in Fast50 and
Fast75, can lead to an unexpected outcome where the desired effect is inverted.
Specifically, this may result in a decrease in accuracy despite a slower inference
time. Therefore, it is crucial to carefully select appropriate parameters by utiliz-
ing techniques such as analyzing the inference-time/accuracy plot to ensure the
desired performance outcome is achieved.

6 Future work

To improve the efficiency of face detection systems, future work can analyze the
impact on inference time and accuracy if positional information of previously
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Fig. 5: This plot adds our proposed models to the initial plot of Fig. 4, which
is represented by the dashed line. Our proposed Fast100, Fast 125, and Fast150
networks increase the Pareto front in the inference-time/accuracy spectrum, as
visualized in the solid line. Fast50 and Fast75 do not increase the border, as they
are slower and have less accuracy than ULFGFD.

detected faces are utilized to narrow down the search area in subsequent readings,
instead of scanning the entire image each time. This strategy can significantly
reduce the computational cost and time required for the detection process.

Furthermore, to enhance the system's resilience and prevent it from being
deceived by fake representations, such as videos or photos, a liveness detection
mechanism can be incorporated. This mechanism can distinguish between the
presence of an actual person in front of the camera and a non-living represen-
tation, such as a still image or a pre-recorded video. By incorporating such a
mechanism, our system can be more reliable and effective in real-world scenarios
where security and authenticity are crucial factors.

7 Conclusion

In recent years, real-time face recognition has become increasingly popular, par-
ticularly for applications in decentralized systems and on embedded hardware.
However, this popularity has come with several challenges, including the trade-off
between accuracy and inference-time on constrained hardware resources. Achiev-
ing higher accuracy is desirable, but it often comes at the cost of longer inference-
time, which is particularly problematic for embedded devices with limited pro-
cessing power.

To address this challenge, we conducted a comparative study to investigate
the effect of using different face recognition distance functions. Future datasets
and models should include inference time as a metric for performance evaluation.
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This will allow researchers to better understand the trade-offs between accuracy
and efficiency in real-world deployment scenarios, and enable the development
of more effective and efficient face detection models that can be deployed in
real-world applications. By including inference time as a metric, the practical
relevance of face detection research is improved and models can be optimized
for real-world deployment. We also introduced a novel inference-time/accuracy
plot that enables the comparison of different face recognition models. Our anal-
ysis showed that different models have different strengths and weaknesses, and
every application must strike a balance between inference-time and accuracy,
depending on its focus.

To achieve optimal performance across the spectrum, we proposed a com-
bination of multiple models with distinct characteristics. This approach allows
the system to address the weaknesses of individual models and optimize per-
formance based on the specific needs of the application. We demonstrated the
practicality of our proposed approach by developing a multimodel face recog-
nition pipeline. We utilized two face detection models positioned at either end
of the inference-time/accuracy spectrum to achieve superior overall accuracy,
reliability, and speed. Specifically, we employed the more accurate model when
necessary and the faster model for generating fast proposals, thereby improving
the trade-off between inference-time and accuracy.

Overall, our proposed pipeline can serve as a guideline for developing real-
time face recognition systems on embedded devices. By striking an optimal bal-
ance between the performance of different models, we can improve the overall
accuracy, reliability, and speed of such systems.
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