
Android Security: Taming the Complex Ecosystem
Stanford CS155 guest lecture
2019-05-23
René Mayrhofer, Director of Android Platform Security

Personal Twitter: @rene_mobile

Outline

1. The Ecosystem and State of the Union (The Marketing Part)

2. Android Platform Security Model and Implementation (The Systematic Part)

3. Taming Complexity (The “What I learned” Part)

4. Where do we go from here (The Future Part)?

State of the (Android) Union

The Android ecosystem in numbers

> 24.000
devices

https://www.blog.google/around-the-globe/google-europe/android-has-created-more-choice-not-less/

> 1.300
brands

> 1 M
apps

> 2 B
users

https://www.blog.google/around-the-globe/google-europe/android-has-created-more-choice-not-less/

Measuring exploitation difficulty: 0-day pricing

$200,000.00

$150,000.00

$100,000.00

$50,000.00

$0.00

Verified Boot TEE/Enclave Remote Kernel Kernel

Android

iOS

$125,000.00

$75,000.00

$50,000.00

$25,000.00

$0.00

iPhone Nexus

Sandbox

Unuath App Install

$150,00.00

$100,00.00

$50,00.00

$0.00

iPhone X

Browser

Short distance wireless

$100,000.00

$50,000.00

$30,000.00

$20,000.00

$10,000.00

$0.00

iPhone

Browser

Kernel Bonus

$40,000.00

Mobile Pwn2Own 2016 Mobile Pwn2Own 2017 Mobile Pwn2Own 2018

Pixel

Persistence Bonus

Pixel 2

Messaging (SMS/MMS)

Baseband

Kernel Bonus

Measuring exploitation difficulty: 0-day pricing

critical security vulnerabilities affecting the
Android platform in 2018 publicly disclosed without

a security update or mitigation available

0

1B 29% 84%

Android patching has improved

Malware is a
universal risk

“This year, we celebrated the 30th
anniversary of the World Wide Web. Fast
forward thirty years and the threat landscape
is exponentially more complex, and the
available attack surface is growing faster than
it has at any other point in the history of
technology,” commented Ondrej Vlcek,
President of Consumer at Avast.

Google AI.

50B
Apps verified

per day

2+B
Devices

protected

500K
Apps analyzed

per day

World’s most widely used Anti-Malware solution

Identifies potential security
enhancements when apps
are uploaded to Play 300,000
developers have fixed
1,000,000+ Play apps.

Play App Security Improvement Program

In 2018, downloading
a PHA from Google Play
was 0.04%, and outside
of Google Play was 0.92%.

Google Play

Outside of Google Play

Q1, 2017 Q2, 2017 Q3, 2017 Q4, 2017 Q1, 2018 Q2, 2018 Q3, 2018 Q4, 2018

2018
0.04%

2018
0.92%

PH
A

in
st

al
l r

at
e

0%

1%

2%

3%

Android PHA install rates over time

The Android Platform
Security Model

[R. Mayrhofer, J. Vander Stoep, C. Brubaker, N. Kralevich. “The Android Platform Security Model‘, arXiv:1904.05572, April 2019,
https://arxiv.org/abs/1904.05572]

https://arxiv.org/abs/1904.05572

Security Goals

1. Protecting user data
a. Usual: device encryption, user authentication, memory/process isolation
b. Upcoming: personalized ML on device

2. Protecting device integrity
a. Usual: malicious modification of devices
b. Interesting question: against whom?

3. Protecting developer data
a. Content
b. IP

Threat Model

● Adversaries can get physical access to Android devices
○ Powered off
○ Screen locked
○ Screen unlocked by different user
○ Physical proximity

● Network communication and sensor data
are untrusted

○ Passive eavesdropping
○ Active MITM

[R. Mayrhofer. “An architecture for secure mobile devices”, Security and Communication Networks, Volume 8 Issue 10, July 2015, pp. 1958-1970]

● Untrusted code is executed on the device
● Untrusted content is processed by the device
● New: Insiders can get access to signing keys

Actors control
access to the

data they create

Principles

Safe by
design/default

Consent is
Informed and
meaningful

Defense in depth

The Android Platform Security Model
(1) Multi-Party Consent

Users

App
Developer Platform

The Android Platform Security Model

(2) Open ecosystem access

(3) Security is a compatibility requirement

(4) Factory reset restores the device to a safe state

(5) Applications are security principals

Implementing the
Security Model

[R. Mayrhofer, J. Vander Stoep, C. Brubaker, N. Kralevich. “The Android Platform Security Model‘, arXiv:1904.05572, April 2019,
https://arxiv.org/abs/1904.05572]

https://arxiv.org/abs/1904.05572

Strategies

● Contain: isolating and de-privileging components,
particularly ones that handle untrusted content.

○ Access control: adding permission checks, increasing the granularity
of permission checks, or switching to safer defaults (for example,
default deny).

○ Attack surface reduction: reducing the number of entry/exit points
(i.e. principle of least privilege).

○ Architectural decomposition: breaking privileged processes into less
privileged components and applying attack surface reduction.

● Mitigate: Assume vulnerabilities exist and actively defend
against classes of vulnerabilities or common exploitation
techniques.

reduce
reachability
of code

reduce
impact of
reachable
bugs

It all starts with secure hardware

SOC

TEE
SE

TEE (Trusted execution
environment) used for key
generation, key import, signing
and verification services
are executed in hardware.
.
Secure Lock Screen, PIN
verification & Data encryption
(PIN+HW key) used to derive
encryption keys.

Version binding ensures
keys created with a newer OS
cannot be used by older OS
versions.

Rollback prevention (8.0+)
prevents downgrading OS to
an older less secure version
or patch level.

Verified Boot provides
cryptographic verification of
OS to ensure devices have
not been tampered with.

Tamper-resistant hardware
(Android Pie) offers support
to execute cryptographic
functions in dedicated
hardware.

Question:
Make bootloader/verified boot state available to all apps?

SELinux, process isolation and sandboxing

Personal
app 1

Personal
app 2

Work
app 1

Work
app 2

Work profile

Android device Primary profile

Android is built on SELinux
where if an exploit is found,
the attack vector is limited
to the domain the exploit
is able to execute in.

Application sandboxing
ensures that application and
system data is inaccessible
from other apps.
Each app runs in its own user
ID (UID) - limiting exposure of
apps to get data from
one another.

Work profile apps are
prevented from
communicating with personal
apps by default.
Work profile apps run in
a separate user space with
separate encryption keys
from personal apps,
further limiting exposure,
EMMs cannot manage
the personal device when
the device is managed
only via the Work Profile.

Question:
Controlling device-wide parameters from profile owner?

Layers of containment on main AP

Personal
app 1

Personal
app 2

Work
app 1

Work
app 2

Work profile

Primary Android user

Personal
app 3

Personal
app 4

Additional Android user

Android Linux kernel

Hypervisor

VM kernel

VM apps

Hardware mode monitor

TEE kernel

TEE
app 2

TEE
app 1

Key-
master

Gate-
keeper

FP
match

HAL 2

System
service 2

HAL 1

System
service 1

Question:
Dynamic SELinux policy update at run time?

Question:
Add another runtime permission for <X>?

Anti-exploitation

Bug = Exploit

Linux Kernel

HAL

Android Runtime

Native Libraries

Android Framework

Applications

The tiered authentication model

Tertiary auth
- Needs primary auth
- Least secure
- Most constrained

Secondary Auth
- Needs primary auth
- Less secure
- Somewhat constrained

Primary Auth
- Knowledge-factor based
- Most secure

Question:
Expose authentication details to all apps?

Taming Complexity

Many variants and stakeholders:
Enabling an active ecosystem

> 24.000
devices

> 1.300
brands

> 1 M
apps

Can be written in any language

Question:
How many different platform signing keys?

Compatibility Definition Document (Standards)

● Defines requirements a device needs to fulfill
to be considered "Android"

● Updated for every Android release
○ Many changes scoped to apps targeting

this version
● Needs to strike a balance between strong

standard base and openness for innovation
○ Some requirements scoped to hardware

capabilities (e.g. form factors)
● Updating security requirements is one

important means of driving ecosystem to
improvement

Taming complexity in variants

Compatibility/Vendor/Security/... Test Suite
(Enforcement)

● Tests need to be run by device menufacturer
● Guaranteed conformance to (testable parts

of) CDD

In Android Q, ca. 800 tests for SELinux policy

● Usability of Android trademark and Google
apps bound to passing tests

● Complexity in test execution:
○ Automation of test cases
○ Visibility on "user" firmware builds

Question:
How quickly to change the requirements?

Changing the ecosystem is hard - Various strategies

1. Introducing new requirements initially as optional, becoming mandatory only in
future releases → time for development, testing, adaptation

Important lesson: Clear communication of plans way ahead of schedule

2. Ratcheting requirements from release to release with a pace that lets hardware
keep up (including low-end devices and verticals) or keeping carve-outs

Important lesson: Let the tail end of the ecosystem keep up

100%
of compatible devices
launching with Q will
encrypt user data

TV

Strong

● 72-hours before fallback to primary
auth

● Application integration via
BiometricPrompt, FIDO2, or custom
APIs

Convenience

● 4 hours before fallback to primary
auth

● No application integration of any
kind.

Weak

● 12 hours before fallback to primary
auth

● No application integration of any
kind.

Strong

● 72-hours before fallback to primary
auth

● Application integration via
BiometricPrompt, FIDO2, or custom
APIs

Convenience

● 4 hours before fallback to primary
auth

● No application integration of any
kind.

Weak

● 12 hours before fallback to primary
auth

● No application integration of any
kind.

Target API version requirements

https://android-developers.googleblog.com/2019/02/expanding-target-api-level-requirements.html

Actively maintained apps (forefront) in Play

August 2019: New apps are required to target
API level 28 (Android 9) or higher.
November 2019: Updates to existing apps are
required to target API level 28 or higher.

Apps not getting updates (tail end) on device

August 2019: New apps will receive warnings
during installation if they do not target API level
26 or higher.
November 2019: New versions of existing apps
will receive warnings during installation if they
do not target API level 26 or higher.

https://android-developers.googleblog.com/2019/02/expanding-target-api-level-requirements.html

Apps targeting Pie, usage of NetworkSecurityConfig

>80%
block all cleartext with no
exceptions (default)

Block cleartext with
manually-configured

exceptions

Not configured to block cleartext

Source: Google Internal Data, 2019-04-01

Tooling

● Compiler/build toolchain ideally used by all stakeholders (e.g. drivers, TrustZone, etc. code)
● Can add new mitigations at this level, but typically breaks old code

 Upstream first approach

● Importance to commit changes to common upstream code (e.g. Linux kernel, clang, etc.)
● Encouraging other stakeholders to upstream their changes (either to common upstream or to

AOSP)

Open source and common issue trackers

Taming complexity in stakeholders

Where do we go from here?

Identity Credentials

Identity Credential Application
NFC / Bluetooth /
Wifi Direct

Internet Protocol

Framework APIs

Credential Store Transaction Viewer App
SystemUI

Identity Credential Impl
typically in tamper-resistant HW

Keymaster
Attestation
typically in TEE

Android OS

Reader / Verifier

Issuing Authority

Credential 1

Data Item 1

Data Item 2

...

Data Item m1

Credential 2

Data Item 1

...

Credential n

Data Item 1

......

Identity Credential impl in secure hardware

Credential Store

App 1 App 2 App n

Data Item 2 Data Item 2

Data Item m2
Data Item mn

Security and Privacy for draft mDL standard

● Security properties:
○ Anti-forgery: Identity Credential data is signed by the Issuing Authority
○ Anti-cloning: Secure Hardware produces MAC during provisioning using a key derived from a

private key specific to the credential and an ephemeral public key from the reader. Public key
corresponding to credential private key is signed by the Issuing Authority

○ Anti-eavesdropping: Communications between Reader/Verifier and Secure Hardware are
encrypted and authenticated

● Privacy properties:
○ Data minimization: Reader/Verifier only receives data consented to by the holder. Backend

infrastructure does not receive information about use
○ Unlinkability: Application may provision single-use keys
○ Auditability: Every transaction and its data is logged and available only to the Holder (not the

application performing the transaction)

Question:
Strictly require secure (certified) hardware?

Status

No changes to platform itself

Android Q Future versions

Software implementation as
compatibility library

Can start developing identity apps,
library will be compatible with vast
majority of Android devices

SecurityType = SOFTWARE_ONLY
CertificationLevel = NONE

HAL implementation based on
secure hardware

Optional Direct Access support

Credential Store system daemon

Framework APIs

Insiders

Simple and few
trusted components

Dynamic code

Apps

System (OS)

Firmware

Hardware

Hardware

Threat models / scenarios for hardware security

● Basic assumption for hardware security:
○ Adversary has possession of the hardware
○ Adversary has control over all network channels
○ Adversary can influence sensor readings/input

● Intermediate assumptions:
○ Side channel analysis: including power, RF, timing, and potentially others
○ Side channel injection: including power, clock, RF (up to laser), and potentially others
○ Reverse engineering of hardware
○ Modification of hardware on PCB level, but not chip level

● Advanced assumptions:
(AKA nation state adversaries or insider threats)

○ Modification of hardware on chip level
○ Access to internal signing keys

Open research question:
Transparency and meaningful

auditability for hardware components

Firmware

Wipe on firmware update
without user involvement

[C-SR] are STRONGLY RECOMMENDED to provide insider attack
resistance (IAR), which means that an insider with access to firmware
signing keys cannot produce firmware that causes the StrongBox to
leak secrets, to bypass functional security requirements or otherwise
enable access to sensitive user data. The recommended way to
implement IAR is to allow firmware updates only when the primary
user password is provided via the IAuthSecret HAL. IAR will likely
become a requirement in a future release.

https://android-developers.googleblog.com/2018/05/insider-attack-resistance.html
https://source.android.com/compatibility/9.0/android-9.0-cdd Section 9.11.2. StrongBox

https://android-developers.googleblog.com/2018/05/insider-attack-resistance.html
https://source.android.com/compatibility/9.0/android-9.0-cdd

Google Pixel 2 (Weaver)

● Javacard applets on NXP secure element hold
secrets and compare user knowledge factor

● Explicitly doesn’t implement data backup
functionality

● If app is updated, secrets are wiped
● NXP SE OS upgrade itself requires app to be

uninstalled, wiping secrets.
● If a new app is needed, it’s installed alongside

the old, and secrets are migrated when used.

Insider Attack Resistance for user PIN/password/pattern

Google Pixel 3 (Weaver and Strongbox)

● Custom firmware on Google Titan M
● Firmware update is atomic with A/B

(active/inactive) slots
● Any new firmware is put into untrusted “hold”

state during installation to inactive slot
● Only providing matching user knowledge

factor transitions it into trusted active slot
● Resetting knowledge factor (e.g. for RMA)

forces wiping secrets beforehand

https://www.blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/

https://www.blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/

System (OS)

Transparency for system
updates

Android Verified Boot (AVB) / VBMeta

● AVB uses VBMeta structures to describe/verify elements of the boot chain.
● Bootloader stores hash measurement of VBMeta into KeyMaster v4
● VBMeta lives either in its own partition or on chained partitions
● The hash of VBMeta can be remotely attested with Key Attestation

Hashtree

VBMeta
signed by key 1

Payload

Footer

Footer

https://android.googlesource.com/platform/external/avb/
https://developers.google.com/android/images

https://android.googlesource.com/platform/external/avb/
https://developers.google.com/android/images

VBMeta digest verification

Getting reference VBMeta digest

Attestation and verification of VBMeta digest

Download
Factory Image

Unzip
Factory Image

avbtool
verify
image

avbtool
calculate

vbmeta digest
VBMeta Digest

Generate
KeyPair

Get Key
Attestation Cert

Chain

Validate Key
Attestation Cert

Chain

VBMeta Digest
from Cert
Extension

Match?

Device side Server side

https://android.googlesource.com/platform/external/avb/
https://developers.google.com/android/images

https://android.googlesource.com/platform/external/avb/
https://developers.google.com/android/images

Apps

System (OS)

End-to-end backup encryption

Encrypted backup key protocol (simplified)
Backup Restore

Google Cloud
Key Vault

https://developer.android.com/about/versions/pie/security/ckv-whitepaper
https://security.googleblog.com/2018/10/google-and-android-have-your-back-by.html

THM

https://developer.android.com/about/versions/pie/security/ckv-whitepaper
https://security.googleblog.com/2018/10/google-and-android-have-your-back-by.html

Encrypted backup key protocol (simplified)
Backup Restore

Google Cloud
Key Vault

1

2

https://developer.android.com/about/versions/pie/security/ckv-whitepaper
https://security.googleblog.com/2018/10/google-and-android-have-your-back-by.html

EPK(Epin(K))

K
 pin PK

EPK(Epin(K))

THM

https://developer.android.com/about/versions/pie/security/ckv-whitepaper
https://security.googleblog.com/2018/10/google-and-android-have-your-back-by.html

Encrypted backup key protocol (simplified)
Backup Restore

Google Cloud
Key Vault

1

2

https://developer.android.com/about/versions/pie/security/ckv-whitepaper
https://security.googleblog.com/2018/10/google-and-android-have-your-back-by.html

EPK(Epin(K))

K
 pin PK

EPK(Epin(K))

 k'
PK

3
THM

https://developer.android.com/about/versions/pie/security/ckv-whitepaper
https://security.googleblog.com/2018/10/google-and-android-have-your-back-by.html

Encrypted backup key protocol (simplified)
Backup Restore

Google Cloud
Key Vault

1

2

https://developer.android.com/about/versions/pie/security/ckv-whitepaper
https://security.googleblog.com/2018/10/google-and-android-have-your-back-by.html

EPK(Epin(K))

K
 pin PK

EPK(Epin(K))

 k'
PK

3

pin ?= pin'

Epin(K)
6 (w. failure
counter)

THM

4

EPK(pin' + k')

pin'

5

https://developer.android.com/about/versions/pie/security/ckv-whitepaper
https://security.googleblog.com/2018/10/google-and-android-have-your-back-by.html

Encrypted backup key protocol (simplified)
Backup Restore

Google Cloud
Key Vault

1

2

https://developer.android.com/about/versions/pie/security/ckv-whitepaper
https://security.googleblog.com/2018/10/google-and-android-have-your-back-by.html

EPK(Epin(K))

K
 pin PK

EPK(Epin(K))

 k'
PK

3

pin ?= pin'

Epin(K)
6 (w. failure
counter)

THM

4

EPK(pin' + k')

pin'

5

K

K

K

7

k'
8

https://developer.android.com/about/versions/pie/security/ckv-whitepaper
https://security.googleblog.com/2018/10/google-and-android-have-your-back-by.html

Dynamic code

Apps

Auditability is a key defense
against insider attacks

Don’t take my word for it

(Some) Resources
● https://www.android.com/security-center/
● https://source.android.com/security
● https://developer.android.com/training/articles/security-tips
● https://arxiv.org/abs/1904.05572
● https://source.android.com/security/reports/Google_Android_Enterprise_Security_Whitepaper_2018.pdf
● https://android-developers.googleblog.com/search/label/Security
● https://android-developers.googleblog.com/2019/05/whats-new-in-android-q-security.html
● https://android-developers.googleblog.com/2018/12/android-pie-la-mode-security-privacy.html
● https://www.google.com/about/appsecurity/research/presentations/
● https://www.mayrhofer.eu.org/post/android-tradeoffs-0-meta/
● https://www.mayrhofer.eu.org/post/android-tradeoffs-1-rooting/
● https://www.blackhat.com/docs/us-17/thursday/us-17-Kralevich-Honey-I-Shrunk-The-Attack-Surface-Adventures-In-And

roid-Security-Hardening.pdf
● https://www.blackhat.com/docs/us-16/materials/us-16-Kralevich-The-Art-Of-Defense-How-Vulnerabilities-Help-Shape-S

ecurity-Features-And-Mitigations-In-Android.pdf

https://www.android.com/security-center/
https://source.android.com/security
https://developer.android.com/training/articles/security-tips
https://arxiv.org/abs/1904.05572
https://source.android.com/security/reports/Google_Android_Enterprise_Security_Whitepaper_2018.pdf
https://android-developers.googleblog.com/search/label/Security
https://android-developers.googleblog.com/2019/05/whats-new-in-android-q-security.html
https://android-developers.googleblog.com/2018/12/android-pie-la-mode-security-privacy.html
https://www.google.com/about/appsecurity/research/presentations/
https://www.mayrhofer.eu.org/post/android-tradeoffs-0-meta/
https://www.mayrhofer.eu.org/post/android-tradeoffs-1-rooting/
https://www.blackhat.com/docs/us-17/thursday/us-17-Kralevich-Honey-I-Shrunk-The-Attack-Surface-Adventures-In-Android-Security-Hardening.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Kralevich-Honey-I-Shrunk-The-Attack-Surface-Adventures-In-Android-Security-Hardening.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Kralevich-The-Art-Of-Defense-How-Vulnerabilities-Help-Shape-Security-Features-And-Mitigations-In-Android.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Kralevich-The-Art-Of-Defense-How-Vulnerabilities-Help-Shape-Security-Features-And-Mitigations-In-Android.pdf

Appendix

Calculating VBMeta Digest from Factory Image

● Build avbtool from AVB 2.0 AOSP.
● Download and unzip factory image for Pixel 3.
● Validate that VBMeta structures match up with referenced partitions.

○ avbtool verify_image --image vbmeta.img --follow_chain_partitions

● Calculate VBmeta Digest
○ avbtool calculate_vbmeta_digest --image vbmeta.img

https://android.googlesource.com/platform/external/avb/
https://developers.google.com/android/images

Attesting VBMeta Digest

● DevicePolicyManager.generateKeyPair() to get AttestedKeyPair
● AttestedKeyPair.getAttestationRecord() to get Key Attestation Cert Chain
● Validate the chain up to the Google root certificate
● Extract extension OID 1.3.6.1.4.1.11129.2.1.17 from leaf certificate
● RootOfTrust sequence contains verifiedBootHash field with VBMeta Digest

RootOfTrust ::= SEQUENCE {
 verifiedBootKey OCTET_STRING,
 deviceLocked BOOLEAN,
 verifiedBootState VerifiedBootState,
 verifiedBootHash OCTET_STRING,
}

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#generateKeyPair(android.content.ComponentName,%20java.lang.String,%20android.security.keystore.KeyGenParameterSpec,%20int)
https://developer.android.com/reference/android/security/AttestedKeyPair.html#getAttestationRecord()
http://go/gh/googlesamples/android-key-attestation/blob/master/server/src/main/java/com/android/example/KeyAttestationExample.java#L3
https://developer.android.com/training/articles/security-key-attestation#attestation-v3

https://developer.android.com/about/versions/pie/security/ckv-whitepaper
https://security.googleblog.com/2018/10/google-and-android-have-your-back-by.html

Cohort public keys: https://www.gstatic.com/cryptauthvault/v0/cert.xml

Encrypted backup key protocol (Details)

https://developer.android.com/about/versions/pie/security/ckv-whitepaper
https://security.googleblog.com/2018/10/google-and-android-have-your-back-by.html
https://www.gstatic.com/cryptauthvault/v0/cert.xml

