
René Mayrhofer
Institute of Networks and Security

Anonymously Publishing
Liveness Signals
with Plausible Deniability

Michael Sonntag, René Mayrhofer, Stefan Rass

2

Problem statement

Dall-E with prompt “A picture of a brave woman blowing a whistle while holding up a document folder in film noir style”

3

Problem statement
 Persons might want to prove (“Prover”) to others (“Verifier”) that

they are still alive & well (“Signal” received)
 E.g. whistleblowers; to keep a “security package” stashed with

third parties from being published
 If you want/need such a scheme, you implicitly want to remain

anonymous – and in case of suspicion be able to deny it
 “I am not a whistleblower” (who would be sent to jail)
 “I am not a ‘verifier’ with a package” (who would have to relinquish

the package – and maybe go to jail too – participation/help/…)
 Even if the other party is discovered, all devices are obtained &

analyzed, and the person (made to) cooperate, you should still be
able to disclaim any participation

 We developed and implemented a protocol to support this:
 Proving “liveness” + plausible deniability
 Not included: data communication, security package etc.

4

Solution outline [1]
 Store “Signal” on a third-party server, so communication is

completely asynchronous → no correlation attacks
 Communication should be explainable as “normal usage”, too

 Use Tor & Onion services to hide participants
 Large foreign public Onion services (= Signal storage) preferable
 Querying non-existing signals: random generation

 Roles are symmetrical regarding stored data
 Each one can claim to be the other (if desirable)

 No identical data stored at participants
 Exception: a single shared secret kept in (human) memory
 Prover: nothing related found at Verifier, even if all secrets (incl.

shared one) are disclosed correctly
 Verifier: vice versa
 Both: Lying about anything provides valid values indistinguishable

from those based on correct disclosure

5

Solution outline [2]
 No danger from attackers for storage server

 Proof of Work for querying and submission (DoS prevention)
 No DoS regarding signals or protocol; requires only limited storage

 No registration, payment, etc. needed
 A “key” is used to distinguish multiple provers on a single server

 Derived from the same values; properties as before
 Signals may be missed: participants can calculate/verify forward, but

not backwards
 Based on a hash chain → no reversing (computational limits)
 The prover can stop calculation early to create “old” keys/signals,

but that doesn’t help with identifying/proving a verifier
 After a freely set number of missed signals the verifier considers

the prover “dead” → can delete data, publish security package, ...
 And should stop verification attempts!

6

Prover side

7

Verifier side

8

 Prover & Verifier:
 Onion address of storage server(s): public site, human memory, …
 Shared secret (human memory only)

 Prover:
 Prover secret (human memory only) for signal/key generation
 Number of the next signal

 Or some method of deriving it, e.g. starting time + current date/time
 Arbitrary data looking like current key generation/verification data

 Verifier:
 Verifier secret (human memory only)
 Current key generation data

 Encrypted via XOR with data derived from verifier secret and verification
data during storage & ratcheted forward after each sending

 Verification data for verifying the next signal value
 Onion service operator: Map[Key → Signal]

Data “stored” by participants

Single hash value each

9

Exemplary implementation

10

 Same Android app for Prover & Verifier:
 Default onion address for storage server (run by INS at JKU)
 App secret specific to each user, used for local storage encryption
 Shared secret (human memory only) for signal creation+verification

Exemplary implementation

11

Exemplary implementation

12

 Same Android app for Prover & Verifier:
 Default onion address for storage server (run by INS at JKU)
 App secret specific to each user, used for local storage encryption
 Shared secret (human memory only) for signal creation+verification

 Synchronizing Prover & Verifier:
 One-time initial synchronization, assisted by displaying a QRcode

at Prover and scanning with Verifier
 After that first synchronization, completely asynchronous

communication through the Onion service
 Core cryptographic protocol implemented in Java-only library

 Minor dependencies (mostly logging)
 Can be easily used in other apps, e.g. standard news organizations

apps with integrated messaging functionality

Exemplary implementation

13

Plausible deniability achieved? [1]
 Prover cooperates and discloses prover and shared secret

 Future keys and signals can be calculated
→ Prover can be impersonated

 None of that data is found at the verifier on any device, neither the
shared secret nor any of the future key or verification data

 Calculating older keys does not help, as servers do not store
when/whether the data was retrieved – and would they, this would
not help either with identifying/proving a Verifier because of Tor

 Lying about the shared secret produces valid values that can be
stored (but will not validate); previous ones (allegedly published in
the past) are no longer stored by the server and enumeration by
attacker in advance is impossible

 Correlation attacks can be performed, but require cooperation of
the storage server → pre-calculate the key and wait for check(s)

14

Plausible deniability achieved? [2]
 Prover can claim to be a verifier: With an invented (or correct) shared

secret signals can be successfully retrieved, but none will validate
 Some delay required to convincingly tell “prover is already dead”
 Old signals cannot be generated, so it is impossible to prove that

there never was a valid signal
 Verifier: Situation is symmetric

 Verifier can be impersonated if disclosing all values
 Verifying liveness becomes possible for the attacker

 No help identifying/proving the Prover
 No matching data found there; no access to previous keys or signals

as this would require reversing the hash function
 Verifier could claim to be a prover: that no one verifies this could

only be proven together with the storage server & if quick
 Or prover would already consider him dead and checks no longer

15

Summary
 We provide a scheme to prove a “recent activity” by “someone

knowing a shared secret”
 But without the ability for attackers to identify any participant,

knowing such a scheme is going on, and even if all (other) partici-
pants cooperate fully, the last one can still deny involvement
 Or claim a different role, if desirable

 Open problems:
 Separate app needed: integration (tiny part) into a widely-used

app would remove this sign of participation
 Alternative: Download JavaScript from trusted website and calculate

locally; difficult to verify this is secure (unchanged code); requires lots
of trust in the site

 Third party needed for storage
 Load is low: practically no computational effort required
 Storage: 1 attacker doing 24/7 nothing else: ≈ 15 MB storage

JOHANNES KEPLER
UNIVERSITÄT LINZ
Altenberger Straße 69
4040 Linz, Österreich
www.jku.at

Questions?

Michael Sonntag
michael.sonntag@ins.jku.at
+43 (732) 2468 - 4137
S3 235 (Science park 3, 2nd floor)

https://www.ins.jku.atTHANK YOU FOR
YOUR ATTENTION!

	Anonymously Publishing Liveness Signals with Plausible Deniabil
	Problem statement
	Problem statement (2)
	Solution outline [1]
	Solution outline [2]
	Prover side
	Verifier side
	Data “stored” by participants
	Exemplary implementation
	Exemplary implementation (2)
	Exemplary implementation (3)
	Exemplary implementation (4)
	Plausible deniability achieved? [1]
	Plausible deniability achieved? [2]
	Summary
	Thank you for your attention!

