Classifier Class Reference

#include <Classifier.h>

Inheritance diagram for Classifier:

ClassifierAlgorithm List of all members.

Public Member Functions

 Classifier (const string &name, const classifierparams &params)
virtual ~Classifier ()
virtual void init (FeatureContainer *fc)
virtual membershiplist getClusterMembership (const featurevector *sample)
virtual unsigned long nextSample ()
virtual unsigned long nextSample (const featurevector *sample)
virtual string serialize () const
virtual void unserialize (string data)
ClassifierAlgorithmgetCa () const
virtual string toString () const

Detailed Description

Classifier Wrapper

The Classifier Class is a wrapper class that loads a dll containing the actual implementation during runtime.


Constructor & Destructor Documentation

Classifier::Classifier const string &  name,
const classifierparams params
 

Creates the classifier

Parameters:
name The name of the requested classifier implementation.
params A map of parameters to initialize the classifier.

Classifier::~Classifier  )  [virtual]
 

Destructor


Member Function Documentation

ClassifierAlgorithm* Classifier::getCa  )  const [inline]
 

Return actual ClassifierAlgorithm instance

virtual membershiplist Classifier::getClusterMembership const featurevector sample  )  [inline, virtual]
 

Get membership vector

This method returns the data for the next steps, which is a list of context classes found by the algorithm with associated membership values. These values specify the membership of the current feature values to each of the context classes in the interval [0; 1]. They can thus by seen as the probabilities that the context classes are currently active.

Parameters:
sample The sample vector for which the membershiplist should be calculated

Implements ClassifierAlgorithm.

virtual void Classifier::init FeatureContainer fc  )  [inline, virtual]
 

Initializer

Initializes internal data structures of the classification/clustering algorithm. This usually involves constructing initial prototypes for cluster centers; thus, randomized feature vectors are necessary for the initialization. The getFeatureVector method of the passed FeatureContainer object may be called multiple times by the initialization. The given FeatureContainer is also used when nextSample() is called.

Parameters:
fc The FeatureContainer from which the randomized feature vectors should be retrieved.
See also:
FeatureContainer::getFeatureVector

nextSample()

Implements ClassifierAlgorithm.

virtual unsigned long Classifier::nextSample const featurevector sample  )  [inline, virtual]
 

Fetch next sample vector Gets the next sample vector passed as parameter.

Parameters:
sample samplevector

Implements ClassifierAlgorithm.

virtual unsigned long Classifier::nextSample  )  [inline, virtual]
 

Fetch next sample vector

Gets the next sample vector from the configured feature source. This method calls nextSample and getSampleVector on the FeatureContainer given to the init method.

See also:
FeatureConteiner::nextSample

FeatureContainer::getSampleVector

Implements ClassifierAlgorithm.

virtual string Classifier::serialize  )  const [inline, virtual]
 

Serialize a samples data to a string

Returns:
String representation of the samples data.

Implements ClassifierAlgorithm.

virtual string Classifier::toString  )  const [inline, virtual]
 

This is only for testing.

Implements ClassifierAlgorithm.

virtual void Classifier::unserialize string  data  )  [inline, virtual]
 

Unserialize a samples data from a string

Parameters:
data String representation of the samples data.

Implements ClassifierAlgorithm.


The documentation for this class was generated from the following files:
Generated on Mon Jun 5 10:20:49 2006 for Intelligence.kdevelop by  doxygen 1.4.6